The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells.
نویسندگان
چکیده
The receptor for hyaluronan mediated motility (RHAMM) has been reported to mediate migration, transformation, and metastatic spread of murine fibroblasts. Here we describe the expression of two human RHAMM isoforms, which are generated by alternative splicing of the primary gene transcript, by a series of human breast carcinoma cell lines. A polyclonal antibody, raised against a bacterially expressed RHAMM fusion protein, detected an 85-90 kDa protein by western blot analysis. No correlation between the level of RHAMM mRNA and protein expression with known metastatic/malignant potential of the tumour cell lines was observed. Interestingly, we found that the antibody did not stain the cell surface but the cytoplasm of breast cancer cells. The intracellular localisation of RHAMM was confirmed by subcellular fractionation studies. RHAMM proteins were capable of binding to hyaluronan, but not to heparin or chondroitin sulphate, in an vitro binding assay. We also provide evidence that a potential hyaluronan-binding motif in the N terminus of the protein is not involved in the interaction of RHAMM with hyaluronan. Our findings lead us to conclude that RHAMM does not function as a conventional motility receptor for HA in human breast cancer cells and we suggest the term RHAMM be substituted by 'intracellular hyaluronic acid binding protein' (IHABP).
منابع مشابه
The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments.
We reported recently on the intracellular localisation of the hyaluronan receptor RHAMM/IHABP in human cancer cells. Here we describe the colocalisation of RHAMM/IHABP proteins with microtubules, both in interphase and dividing cells, suggesting that RHAMM/IHABP represents a novel member of the family of microtubule-associated proteins (MAPs). We have identified four different splice variants o...
متن کاملRHAMM splice variants confer radiosensitivity in human breast cancer cell lines
Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the rad...
متن کاملExpression and function of a receptor for hyaluronan-mediated motility on normal and malignant B lymphocytes.
Migration through extracellular matrix is fundamental to malignant invasion. A receptor for hyaluronan-mediated motility (RHAMM) has previously been shown to play a fundamental role in locomotion of ras-transformed cells as well as functioning in signal transduction. Expression of RHAMM was characterized on B lymphocytes from normal and malignant lymphoid tissues using multiparameter phenotypic...
متن کاملIdentification of IHABP, a 95 kDa intracellular hyaluronate binding protein.
The extracellular matrix component hyaluronan is believed to play important roles in various processes of organogenesis, cell migration and cancer. Recognition of and binding to hyaluronan is mediated by cell surface receptors. Three of them, CD44, ICAM-1 and RHAMM (receptor for hyaluronic acid mediated motility), have been identified. A cDNA clone designated RHAMM turned out to possess transfo...
متن کاملBone morphogenic protein receptor type 1a (BMPR1A) and Caveolin-1 associated with trastuzumab resistance of breast cancer cells
Trastuzumab is a specific monoclonal antibody used for therapeutic of the human epidermal growth factor receptor 2 (HER-2) -positive metastatic breast cancer. But, resistance to trastuzumab is a major obstacle in clinical efficiency. During the past years, several studies have been done to find the mechanisms contributing to trastuzumab resistance. Previous studies have highlighted that bone m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 12) شماره
صفحات -
تاریخ انتشار 1998